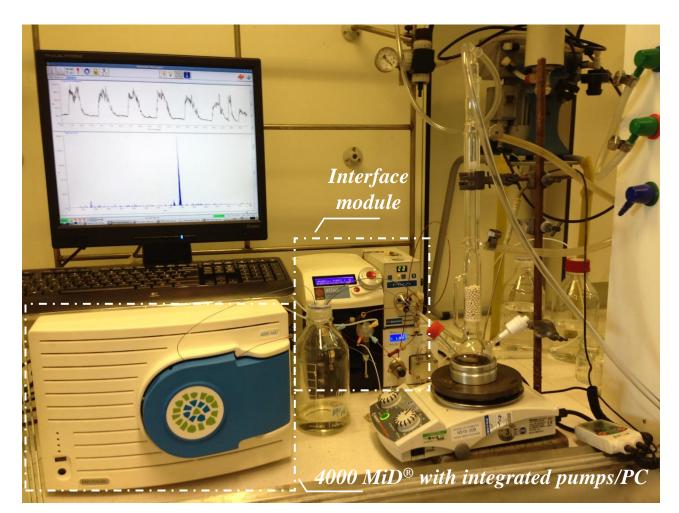


On-line batch reaction monitoring using the Microsaic 4000 MiD® mass spectrometer

Introduction


- Microsaic Systems set up the new 4000 MiD® mass spectrometer at Bristol University to demonstrate the benefits of using on-line reaction monitoring for reactions in batch and flow mode
- The catalytic conversion of ethanol to an advanced biofuel was carried out at Bristol University in collaboration with Prof. Duncan Wass and Dr. Richard Wingad

Aims of the evaluation:

- Obtain more information than conventional off-line method
- Generate instant data reducing sample clean up and off-line analysis associated down times
- Demonstrate the simplicity of setting up on-line reaction monitoring using Microsaic 4000 MiD®
- Overcome reaction solvents incompatibility with conventional MS systems

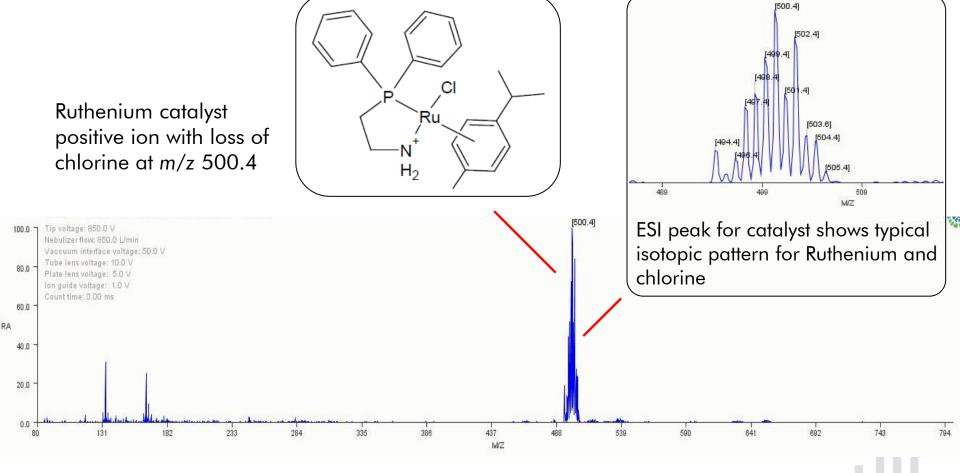
Experimental set-up for on-line batch reaction monitoring

Monitoring of the catalytic conversion of ethanol into *n*-butanol has been carried out by coupling the Microsaic 4000 MiD® to a three neck round bottom flask under inert atmosphere (N₂) through an interface module

Monitoring the catalytic conversion of ethanol into advanced biofuel using the Microsaic 4000 MiD® mass spectrometer

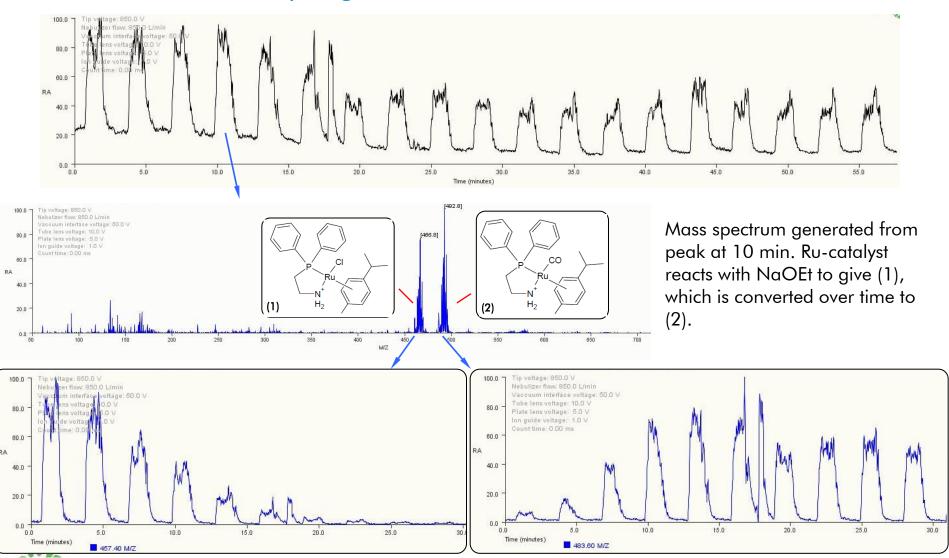
OH
$$\frac{\text{Ru-catalyst}}{\text{NaOEt}}$$
 OH $\frac{\text{NaOEt}}{78^{\circ}\text{C}, 15\text{h}}$

Ruthenium catalysed conversion of ethanol into *n*-butanol

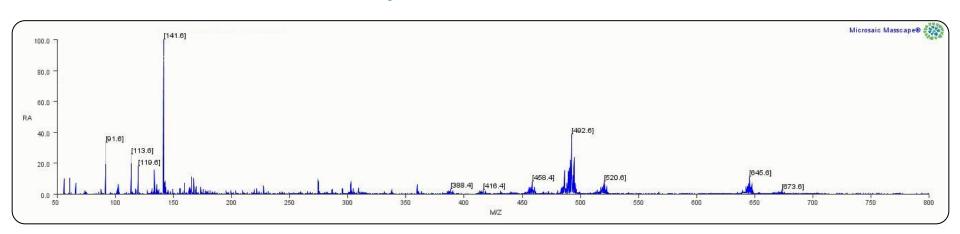

Ruthenium catalyst

Concentration: 12 mg/ml in ethanol

Chemical formula: C₂₄H₃₀NCl₂PRu


MW: 535.5 g/mol

Full scan mass spectrum of ruthenium catalyst in positive ESI before NaOEt addition



TIC for the ruthenium catalysed conversion acquired in full scan with a sampling rate of ~ 5 min

Extracted ion chromatogram of species (1) m/z 466.8

Mass spectrum for ruthenium catalysed conversion after 15 hrs of analysis

Product species generated after 15 hours reaction at 78 °C:

- m/z 91.6 ($C_4H_{11}O_2$)+
- m/z 113.6 (C₄H₁₀O₂Na)+
- m/z 119.6 ($C_6H_{15}O_2$)+
- m/z 141.6 ($C_6H_{14}O_2Na$)+

 $C_4H_6O_2$ is 1-ethoxyethan-1-ol $C_4H_6O_2$ is 1,1-ethoxyethane $C_4H_{11}O_2$ is 1,3 butandiol

Catalyst species generated after 15 hours reaction at 78 °C:

- m/z 388.4 [Ru(Ph₂PCH₂CH₂NH₂)(CO)₂H]+
- m/z 416.4 [Ru(Ph₂PCH₂CH₂NH₂)(CO)₃H]+
- m/z 458.4 [Ru(Ph₂PCH₂CH₂NH₂)(CO)₃CH₃CHO]⁺
- m/z 520.6 [Ru(Ph₂PCH₂CH₂NH₂)(cymene)CO₂]+
- m/z 645.6 [Ru(Ph₂PCH₂CH₂NH₂)₂(C₄H₆O₂)]+
- m/z 673.6 [Ru(Ph₂PCH₂CH₂NH₂)₂(C₄H₆O₂)(CO₂)]⁺

Benefits of on-line batch reaction monitoring using Microsaic 4000 MiD® reported by Dr. Richard Wingad

Did Bristol University achieve the aims of the evaluation?

- Observed previously unseen catalyst species where NMR and other off-line MS techniques gave none or limited data
- Sample analysed instantly rather than sent as a batch to the centralised MS service
- No sample clean up required prior to analysis
- From initial experimental set up to data acquisition in less than 1 hour
- Full compatibility with all common reaction solvents

Summary of using Microsaic 4000 MiD® for online flow reaction monitoring

- Provides the 'gold standard' of analytical chemistry for real-time reaction monitoring.
- Less time consuming than conventional off-line analysis without the associated costs in money and time.
- Real-time analysis of the reaction material, enabling transformation optimisation, improved yield, purity and reaction selectivity.
- Determine reactions steady state condition and monitor the presence of transient and reactive intermediates.
- Electrospray source and vacuum interface easily removed and cleaned with less than 1 hour downtime.
- \star Less than 20 μ L reaction mixture consumed per sample
- Easily deployable into a fume hood next to the batch reactor system.

*http://www.purdue.edu/discoverypark/caid/programs/mms.php

Contact details

Microsaic systems

Jeremy Reddish

E: jreddish@microsaic.com

M: 07808 645810

W: microsaic.com

University of Bristol

Richard Wingad

E: Rich.Wingad@bristol.ac.uk